

SCIENTIFIC AND METHOD MODULES

Module name	Hybrid systems - Metamaterials		
Number	2016-T6		
Aims	This module teaches the principles of and modern developments in metamaterials.		
Basics	covered in basic modules B3 (wave optics), see also J.D. Jackson, Classical electrodynamics (Wiley)		
Contents	Metamaterials are artificial materials with specific optical properties, typically evoked with sub-wavelength structures (periodic or non-periodic) in order to manage the dielectric function in particular ways such as negative index of refraction. While structural features are easy to fabricate for the micro-wave regime, structural features acting in the visible spectral range are typically $\lambda/4$ (about 100 nm) with even higher precision (few nm) require nano-fabrication tools.		
Methods	Theoretical calculations of Maxwell's equations in the sub-wavelength regime, calculation of effective dielectric functions, nanofabrication of structures, ion beam fabrication, lithography-based processing		
Туре	Two-day block course/ bi-yearly recurrence with modification		
Date (month/year)	29/30 September 2016		
Time	10:00-20:00; 9:00-16:30		
Work load	15 hours presence/ 45 hours self-study		
Examination	Poster presentation about a self-chosen topic about "Hybrid Systems – Metamaterials" (own research or from literature) and discussion (oral) in front of the poster with the organizer(s)		
Credit points	2		
Responsible scientists	Prof. Grundmann, Prof. Cichos		
International guest lecturers	Dr. Geoffroy Lerosey, Institut Langevin, ESPCI Paris Tech and CNRS, France; Dr. Patrice Genevet, CRHEA, Valbonne, France; Prof. Dr. Mikhail Belkin, The University of Texas at Austin, USA		
Industrial partners	-		
Recommendations for literature, e- learning	Metamaterials - Theory, Design, and Applications, Cui, Tie Jun, Smith, David, Liu, Ruopeng, eds. (Springer) Nanophotonic Materials: Photonic Crystals, Plasmonics, and Metamaterials, R.B. Wehrspohn, HS. Kitzerow, K. Busch eds. (Wiley- VCH) Electromagnetic Metamaterials: Physics and Engineering Explorations, N. Engheta, R.W. ziolkowski eds. (Wiley)		

SCHEDULE for Module 2016-T6

Time	Lecturer	Programme	Location	
Day 1				
Day 2				

Didactic elements:

Lecture, discussions, practical training – lab demonstration, etc.

Expected performance: Active participation in discussions during lab demonstration etc.