| Module name                                       | Theory                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Number                                            | 2009-M03                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Aims                                              | Introduction into the most important quantum chemical methods for the study of the behavior of matter and the properties of molecules. Interpretation of the results of quantum chemical calculations.  Application of quantum chemical methods to chemical problems.                                                                                                                                                    |  |  |  |
| Basics                                            | (The topics are covered by lectures from existing master courses): Fundamentals of quantum chemistry: Interpretation of quantum mechanics, Schrödinger equation, approximation procedures in quantum chemistry                                                                                                                                                                                                           |  |  |  |
| Contents                                          | <ol> <li>Introduction in theory: Hartree Fock method and density functional theory.</li> <li>Potential energy surfaces, computational thermochemistry and theoretical spectroscopy.</li> <li>Practical course: Introduction in computational chemistry: Handling of modern quantum-chemical programs (Turbomole). Applications of quantum chemical methods to chemical problems.</li> </ol>                              |  |  |  |
| Methods                                           | Hartree-Fock and density functional theory (DFT)                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Туре                                              | Two-day block course/ June 30, July 1                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Work load                                         | 15 hours presence/ 45 hours self-study                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Examination                                       | oral/ written                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Credit points                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Responsible scientists                            | Kirchner                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| International guest lecturers                     | Reckien                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Industrial partners                               |                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Recommendations<br>for literature, e-<br>learning | F. Jensen, Introduction to Computational Chemistry (Wiley & sons, 2007) A. Szabo, N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover Pubn Inc (1996) I. N. Levine, Quantum Chemistry, Prentice Hall (2008) F. L. Pilar, Elementary Quantum Chemistry, Dover Pubn Inc (2001) P. W. Atkins, R. S. Friedman, Molecular Quantum Mechanics, (Oxford University Press, 1999) |  |  |  |

## UNIVERSITÄT LEIPZIG



## **SCHEDULE**

| Time   | Lecturer         | Program                                                                        | Location                        |
|--------|------------------|--------------------------------------------------------------------------------|---------------------------------|
| Day 1, |                  |                                                                                |                                 |
| 9-11   | Kirchner         | Lecture: Introduction in Quantum Chemistry Part I: Hartree-Fock Theory         | Johannis-<br>allee 29<br>SR 102 |
| 11-13  | Kirchner         | Lecture: Introduction in Quantum Chemistry Part II:<br>Hartree-Fock Theory     | Johannis-<br>allee 29<br>SR 102 |
| 14-15  | Reckien/Kirchner | Lecture/Presentation: Introduction in Computational Chemistry                  | ThC                             |
| 15-18  | Reckien/Kirchner | Practical exercises in Computational Chemistry                                 | ThC                             |
|        |                  |                                                                                |                                 |
| David  |                  |                                                                                |                                 |
| Day 2, |                  |                                                                                |                                 |
| 9-11   | Reckien          | Lecture: Introduction in Quantum Chemistry Part III: Density Functional Theory | Johannis-<br>allee 29<br>SR 115 |
| 11-13  | Reckien          | Lecture: Introduction in Quantum Chemistry Part IV: Post Hartree-Fock Methods  | Johannis-<br>allee 29<br>SR 115 |
| 14-17  | Reckien/Kirchner | Practical exercises in Computational Chemistry                                 | ThC                             |
| 17-18  | Reckien/Kirchner | Presentation and discussion of the results of the practical exercises          | ThC                             |
|        |                  |                                                                                |                                 |
|        |                  |                                                                                |                                 |
|        |                  |                                                                                |                                 |
|        |                  |                                                                                |                                 |
|        |                  |                                                                                |                                 |

Location: ThC: Chair of Theoretical Chemistry (Neubau)

Phone: +49 341 97-36016 Fax: +49 341 97-36094