

SCIENTIFIC AND METHOD MODULES

Module name	Hybrid systems		
Number	200 9 -M09		
Aims	Understanding the principle of biohybrid systems consisting of various nano-structured bioelectronical microarrays and viable cell and tissue models. The focus will be the generation and characterization of biomimetic interfaces and the biological component. Microfluidic and biosensoric monitoring systems will be demonstrated for understanding how the (bio)hybrid systems could be used for screening of active pharmaceutical ingredients.		
Basics	 (The topics are covered by lectures in biochemistry/biotechnology courses from existing bachelor and master courses): Principles in cell biology and biosensors as well as in microfabrication technology (photolithography, nanobiotechnology, biophysics) 		
Contents	 Development of planary and 3D.microcavity-arrays with various substrates and conductive materials including the processing technology (overbiew) Biophysical techniques to characterize cells using impedance spectroscopy and electrophysiology on biosensors. Cell and tissue models on multielectrode-microarrays e.g. Morbus Alzheimer on a chip, Tumour-chip, cardiomyocyte-based array and a new stem cell biochip. Microfluidic assays and bioreactors for eukaryotic cells – technical design, development, fabrication and validation. 		
Methods	Processing techniques to develop and fabricate nano-structured 2D and 3D micro-electrode-arrays including the ccharacterisation of material surface topology. High resolution microscopic techniques (Multiphoton Laser Scanning-Microscopy with STED modus). Monitoring and Imaging of biological models via bioelectronical and optical monitoring.		
Туре	Two-day block course/ yearly recurrence with modification		
Date (month/year)	February 2 nd and 3 rd , 2010		
Time	9.00 – 18.00		
Work load	15 hours presence/ 45 hours self-study		
Examination	Oral – February 09 th , 2010		
Credit points	2		
Responsible scientists	Andrea Robitzki		
International guest lecturers	Andreas Schober (TU Ilmenau), Leipzig University: Randy Kurz, Heinz- Georg Jahnke, Daniel Kloß; Ronny Schulz (TRM/BBZ)		
Industrial partners	Till Mack (KeyNeurotek AG, Magdeburg)		
Recommendations			
for literature, e- learning	(pdf files of selected reviews and power point presentations)		

SCHEDULE

Time	Lecturer	Programme	Location	
February 2 nd , 2010				
09:00– 09:15	Andrea Robitzki	Overview and Introduction in Biohybrid Systems – Road Map	BBZ lecture hall	
09:15- 10:45	Randy Kurz, BBZ	Microstructures and microarrays for a real time monitoring of stem cells	BBZ lecture hall	
11:00- 12:30	Daniel Kloß	3D active microstructures for catching, positioning and measuring 3D <i>in vitro</i> tissue models or inorganic materials		
12:30- 14:00	Lunch break			
14:00- 15:30	Heinz-Georg Jahnke	Morbus Alzheimer models on biochips – from living neural cells to viable brain slices	BBZ lecture hall	
15:45 – 18:00	All lecturers	Demonstration course of selected nano- micro-structures and biosensors	BBZ Laboratories 4 th floor	
	03 rd , 2010			
09:30– 11:00	Till Mack	Research in Industry: Modelling <i>M. Alzheimer</i> -typical neurodegeneration by localized gene transfer of mutated tau	BBZ lecture hall	
11:15- 13:00	Andreas Schober	Hybrid systems for Life Science applications	BBZ lecture hall	
13:00- 14:30	Lunch break			
14:30- 15:30	Andreas Schober	Demonstration course of microfluidic systems - Practical aspects -	BBZ Laboratories 4 th floor	
15:45- 17:15	Ronny Schulz	Bioreactor strategies for Skeletal Tissue Engineering	BBZ lecture hall	
17:30- 18:30	Ronny Schulz	Demonstration course of bioreactor technology	BBZ Laboratories 2 nd floor	

Didactic elements:

Lecture, discussions, practical training – lab demonstration

Expected performance:

Active participation in discussions during lab demonstration (selected work stations)