



## SCIENTIFIC AND METHOD MODULES

| Module name         | Basic Concepts in Chemistry                                                                                                                                                                                                                                                                                                                                       |  |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Number              | 2015-B1                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Aims                | This module for non-chemists introduces the basic concepts in chemistry needed for actively participating in the thematic and advanced modules (T1–T6, A1, A2). The doctoral researchers will be given an introduction into the way chemists interpret atomic properties, structures and bonding.                                                                 |  |  |
| Basics              |                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Contents            | 1. Periodicity<br>atomic models, orbitals, electron configuration, periodic table and asso-<br>ciated properties of the elements: atom and ion size, ionization energy,<br>electron affinity, electronegativity, oxidation number, groups and rows                                                                                                                |  |  |
|                     | 2. Chemical bonds<br>concepts, characteristics, breaking chemical bonds, and experiments.<br>Ionic bonds, covalent bonds, <i>d</i> - and <i>f</i> -orbitals in chemical bonding, van<br>der Waals bonds, hydrogen bonding, hydrogen bonds in bio-systems,<br>electronic and IR-spectroscopy to probe chemical bonding, chemistry: the<br>change of chemical bonds |  |  |
|                     | 3. Coordination chemistry<br><i>d</i> electrons, ligands & ligand types, coordination number, complex com-<br>position and structure, bonding, valence bond theory, Lewis-acid/ -base<br>theory, crystal field theory, crystal field splitting parameter $\Delta_0$ , spectroche-<br>mical series, high-spin & low-spin complexes, spin-only paramagnetism        |  |  |
| Methods             | Seminars                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Туре                | Two-day block course/ yearly recurrence with modification                                                                                                                                                                                                                                                                                                         |  |  |
| Date (month/year)   | March 30-31, 2015                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Time                | See page 2                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Work load           | 15 hours presence/ 45 hours self-study                                                                                                                                                                                                                                                                                                                            |  |  |
| Examination         | Written, 3 short tests                                                                                                                                                                                                                                                                                                                                            |  |  |
| Credit points       | 2                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Responsible         | –<br>Kersting, Krautscheid, Kremer                                                                                                                                                                                                                                                                                                                                |  |  |
| scientists          |                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Industrial partners |                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Recommendations     | C. E. Housecroft, E. C. Constable: "Chemistry", Pearson; P. W. Atkins:                                                                                                                                                                                                                                                                                            |  |  |
| for literature, e-  | "Physical Chemistry"; Haken, H.; Wolf, H.C. Molecular Physics and                                                                                                                                                                                                                                                                                                 |  |  |
| learning            | Elements of Quantum Chemistry: Introduction to Experiments and Theory (Series: Advanced Texts in Physics) (englisch) Springer, Berlin, 2004, J. Reinhold, Quantentheorie der Moleküle, Teubner                                                                                                                                                                    |  |  |

## SCHEDULE for Module 2015-B1

| Time          | Lecturer    | Programme              | Location |  |
|---------------|-------------|------------------------|----------|--|
| 30 March 2015 |             |                        |          |  |
| 8:30-10:00    | Krautscheid | Periodicity I          | SR101    |  |
|               |             | Coffee break           |          |  |
| 10:15-11:45   | Krautscheid | Periodicity II         | SR101    |  |
| 11:45-12:30   |             | Discussion and Test    | SR101    |  |
|               | Lunch break |                        |          |  |
| 13:30-15:00   | Kersting    | Coordination Chemistry | SR101    |  |
|               |             | Coffee break           |          |  |
| 15:15-16:45   | Kersting    | Coordinative Bonds     | SR101    |  |
| 16:45-17:30   |             | Discussion and Test    | SR101    |  |
|               |             |                        |          |  |
| 31 March 2015 |             |                        |          |  |
| 8:30-10:00    | Kremer      | Chemical Bonds I       | SR101    |  |
|               |             | Coffee break           |          |  |
| 10:15-11:45   | Kremer      | Chemical Bonds II      | SR101    |  |
| 11:45-12:30   |             | Discussion and Test    | SR101    |  |

## **Didactic elements:**

Lecture, discussions

## Expected performance:

Active participation in discussions

Doctoral candidates from the chemistry field are allowed to take part in the module but will not receive any credit point or mark for attendance.

Doctoral candidates who have already received two credit points and a mark for the attendance of this module can participate, but cannot receive two graded credit points again or improve their mark.