

SCIENTIFIC AND METHOD MODULES

Module name	From Molecules to Materials: Photocatalysis		
Number	2021-T4		
Aims	This module links molecular sciences and materials science. Starting with basic concepts it will teach how photocatalysis can be applied as versatile synthetic tool in various fields, incl. (asymmetric) organic synthesis, and ligand design. Furthermore, the development of new molecular (incl. biobased), immobilised and heterogeneous catalysts will be described. Insights into photocatalyst characterisation, implementation in multi-catalytic transformations and mechanistic understanding will be provided.		
Basics	Covered in basic module B1 (Basic Concepts in Chemistry).		
Contents	Photocatalysts based on "hard" (synthetic molecules, crystalline nanostructures, covalent organic frameworks (COFs), immobilised catalysts) building blocks for the application in synthesis, including combinations with "soft" (enzymes, biomolecules) co-catalysts. Properties of these materials (optical, redox and photocatalytic properties); applications (photocatalysis, immobilised catalysts, (solar) energy conversion and storage; theoretical and mechanistic aspects.		
Methods	Synthesis, immobilisation techniques, characterisation, photocatalytic studies		
Туре	Single-day online block course / bi-yearly recurrence with modifications		
Date (month/year)	9 September, 2021		
Time	8.45 - 18.00		
Work load	9 hours presence (online course), 51 hours self-study		
Examination	2-page report/essay on a specific topic of the module (self-selected)		
Credit points	2		
Responsible scientists	E. Hey-Hawkins, K. Zeitler		
Guest lecturers	Prof. Burkhard König, Universität Regensburg; Prof. Cristina Nevado, Universität Zürich; Prof. Robert Wolf, Universität Regensburg; Prof. Bettina Lotsch, LMU München& MPI Festkörperforschung Stuttgart; Prof. Jennifer Strunk, Likat, Rostock; Prof. Jan Weigand, TU Dresden; Prof. Todd Hyster, Cornell University		
Industrial partners	-		
Recommendations for literature, e-learning	see Book of Abstracts		

SCHEDULE for Module 2021-T4 Location: wherever@ZOOM

Time	Lecturer	Title	
Thursday, September 9 th 2021, Location: ZOOM/wherever			
8:50 Hey-Hawkins / Zeitler Welcome			
9:00	Burkhard König	Visible light photocatalysis: Basic concepts, recent advances and future perspectives	
9:45	Cristina Nevado	Photoredoxcatalysis as a versatile tool for (asymmetric) synthesis	
10:30 – 11:00 <i>Coffee break</i>			
Breakout Room with Burkhard König		Breakout Room with Cristina Nevado	
11:00	Jan Weigand	Flowers as versatile photoredox catalysts	
11:45	Bettina Lotsch	Beyond molecules: 2D frameworks as platforms for energy conversion and storage	
12:30 – 13:30 <i>Lunch break</i>			
till 13:00 E	Breakout Room with Jan Weigand	till 13:00 Breakout Room with Bettina Lotsch	
13:30	Jennifer Strunk	Supported molecular photocatalysts based on vanadium and titanium oxide: Mode of action characterization with <i>in situ</i> spectroscopy	
14:15	Todd Hyster	Photoenzymatic catalysis – Using light to unlock new enzymatic functions	
15:00 – 15:30 <i>Coffee break</i>			
Breakout Room with Jennifer Strunk		Breakout Room with Todd Hyster	
15:30	Robert Wolf	Metal-mediated methods for the functionalization of white phosphorus	
16:15 Hey-Hawkins / Zeitler Closing Remarks			
16:20 – 17:15 Discussions, Socialising			
Breakout Room with Robert Wolf			

Didactic elements:

Lectures, discussions, etc.

Expected performance: Active participation in discussions during breaks etc.