

SCIENTIFIC AND METHOD MODULES

Module name	Methods of Scientific Computing: Deep Learning/Machine Learning			
Number	2021-T7			
Aims	The course aims at two aspects of machine learning. The first goal is an introduction to statistical mechanics of learning, which aims at describing the typical learning behavior of neural networks, discussion of the generalization performance of strongly overparametrized neural networks. Information field theoretic description of ultrawide neural networks. The second aim is to give an introduction to machine learning techniques and its applications in natural sciences. It will include fields of image recognition, time series analysis and reinforcement learning with examples and applications of neural networks in fluid mechanics.			
Basics	Knowledge of statistical mechanics Basic Knowledge of Linear Algebra Programming knowledge is of advantage			
Contents	 Introduction to Machine Learning and Deep Learning Techniques Deep Learning Statistical Physics: Mapping of ultrawide neural networks to Gaussian processes, description of neural networks with the help of functional integrals Machine Learning Applications: Image Segmentation, Tracking and Feature Extraction with Convolutional Neural Networks Time Series Analysis with Recurrent Neural Networks Applications of Reinforcement Learning in Physics Machine Learning for Fluid Mechanics 			
Methods	Theoretical methods of modern statistical mechanics Image Processing Methods Time Series Analysis Programming			
Туре	Online Course			
Date (month/year)	16 – 17 September 2021			
Time	See page 2			
Work load	15 hours presence / 45 hours self-study			
Examination	Written examination			
Credit points	2			
Responsible scientists	B. Rosenow, F. Cichos			
Industrial partners	-			

Recommendations for literature, e-	• Statistical Mechanics of Learning, A. Engel and C. Van den Broeck, Cambridge University Press (2001).
learning	 Theory Of Neural Information Processing Systems, Anthony C.C. Coolen, Peter Sollich, and Reimer Kühn, Oxford University Press (2009).
	• Neural Networks and Deep Learning, Michael A. Nielsen, Determination Press (2015).
	• Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction. <i>MIT Press,</i>
	Cambridge (1998).
	Deep Learning with Python. F. Chollet, <i>Manning</i> (2017).
	• Neural Networks and Deep Learning: A Textbook. C. C. Agarwal, <i>Springer</i> (2018).
	• Deep Learning. I. Goodfellow, Y. Bengio & A. Courville, <i>MIT Press</i> (2016).
	 Brunton, S., Noack, B. & Koumoutsakos, P. Machine learning for fluid mechanics. arXiv preprint arXiv:1905.11075 (2019).
	 Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. <i>Proc National Acad Sci</i> 113, 3932 3937 (2016).
	• Cichos, F., Gustavsson, K., Mehlig, B. & Volpe, G. Machine learning for active matter. <i>Nat Mach Intell</i> 2 , 94103 (2020).

SCHEDULE for Module 2021-T7

Time	Lecturer	Program	Location		
Thursday, 16 September 2021					
9:30-		Introductory Overview of Deep Learning			
10:00					
10:00-	Peter Sollich	Introduction to statistical machine			
11:00	(Universtität Göttingen)	learning			
11:15-	Giovanni Volpe	Introduction to Timeseries Analysis with			
12:15	(Gothenburg)	Recurrent Neural Networks			
14:00-	Giovanni Volpe	Introduction to Image Processing in			
15:00	(Gothenburg)	Physics with Machine Learning			
15:15-	Kristian Gustavsson	Introduction to Reinforcement Learning			
16:00	(Gothenburg)				
Friday, 17 S	September 2021				
10:00-	Peter Sollich	Gaussian processes for machine			
11:00	(Universtität	learning			
	Göttingen)				
11:15-	Zohar Ringel	Deep learning theory - an approach			
12:15	(Hebrew University)	from the over-parametrized limit			
14:00-	Zohar Ringel	Deep learning theory - an approach			
15:30	(Hebrew University)	from the over-parametrized limit			
15:45-	Steven Brunton	Machine Learning in Fluid Mechanics			
16:45	(Washington University)				
Online	Hands-on (F.	A few online Examples on Machine			
	Cichos)	Learning in Python			
Online	Hands-on (B.	A few problems in the Statistical			
	Rosenow)	Mechanics of Learning			